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Abstract— Reinforcement learning (RL) is a powerful learn-
ing framework which can be used in complex environments
such as autonomous driving. Generally, in autonomous driving,
vehicles run RL algorithm locally. However doing so will not
give a desirable performance as each vehicle will only consider
its own environment. So in autonomous driving it is very
important that the vehicles make actions with the knowledge
learned by other vehicles as well which can be received using
V2X technology. However, relying on a single radio or V2X
mode of communication is not desirable. In the absence of
communication infrastructure on the road side, one can depend
on technologies such as 4G/5G for V2N (Vehicle-to-Network)
communication and Wi-Fi Direct for V2V (Vehicle-to-Vehicle)
communication. Vehicles can depend on cellular technologies
for indirect mode of communication (V2N), if direct V2V
communication is not possible with other vehicles present in the
close vicinity. To reap in the benefits of both Federated learning
and V2X, we present a federated learning architecture with
support from V2X, where all the participant agents make their
actions with the knowledge received using V2X, even when they
are acting in very different environments. Effectiveness of the
proposed V2X federated learning system is demonstrated using
collision avoidance application using Flow, Veins and SUMO.
Simulation results suggest that it important to use a federated
learning to significantly improve the reliability of of the collision
avoidance application.

I. INTRODUCTION

World death rate due to road accidents in 2016 was 18.2
per 100 K population. South-East Asia’s and Africa’s death
rates are higher than the world death rate [1]. Hence, there
is a need to develop a novel solution for collision avoidance.
Nowadays, mobile devices and car infotainment system
are equipped with increasingly advanced sensing, comput-
ing and storage capabilities. Coupled with advancements
in Reinforcement Learning (RL), this opens up countless
possibilities for meaningful applications, e.g., in medical
purposes, robotics and autonomous driving. Reinforcement
Learning (RL) is used in autonomous driving by vehicles
to learn environment on their own. However, in general
vehicles run reinforcement learning locally and take actions
on the basis of knowledge learned by its own. This may
lead to unstable system causing many accidents because of
lack of knowledge of the environment. This problem can
be solved using federated learning. The primary intended
application of federated learning is to provide safety to road
users. Federated learning is a machine learning technique that
trains an algorithm on multiple decentralized edge devices
or servers holding local data samples, without exchanging
their data samples. Main advantage of federated learning

is data privacy as well as improved stability of system.
However, one problem remains of how knowledge learned by
vehicles will be disseminated to other vehicles. To tackle this,
we use Vehicle-to-Everything (V2X) communication tech-
nology. V2X [2] is the communication paradigm enabling
Intelligent Transportation Systems (ITS). V2X includes V2V
(Vehicle-to-Vehicle), V2I (Vehicle-to-Infrastructure), V2N
(Vehicle-to-Network), and V2P (Vehicle-to-Pedestrian). V2V
aims at providing peer-to-peer (P2P) and multi-hop based
short range communication between vehicles’ on-board units
(OBUs). V2I aims at providing indirect communication
between OBUs and road-side units (RSUs) i.e., between
vehicles and road infrastructure like signs and traffic signals
and CCTVs. V2N mainly aims at providing long range
communication between vehicles and network infrastructure
like cellular Base Stations (BSs), edge/cloud computing
servers, and Wi-Fi Access Points (APs). V2X based ITS
applications can be deployed on vehicles by equipping them
with one of the radio access technologies (RAT) like Wi-
Fi, IEEE 802.11p (DSRC), 4G LTE, 5G, or Cellular-V2X.
Since, it is not practical to have the same RAT on all the
vehicles plying on the roads, to maximize dissemination of
ITS messages, these heterogeneous RATs can be exploited
opportunistically, to achieve low latency as well as high
coverage needed for ITS applications. .

The previous works considered only one of V2X modes
of communications i.e., either V2V, V2N, or V2I for dissem-
ination of knowledge learned. To the best of our knowledge,
no work has ever considered both cellular and 802.11 based
radios along with federated learning architecture. The main
contributions of this paper are as follows:

1) We propose a V2X federated learning architecture by
using 4G cellular and 802.11 based radios present in
vehicles.

2) We propose a cooperative collision avoidance solution.
3) We evaluate the performance of the proposed collision

avoidance solution by realizing the V2X federated
learning architecture using 4G LTE and IEEE 802.11p
(DSRC) radios on SUMO, Veins, and FLOW plat-
forms.

The rest of the paper is structured as follows: Section II
presents related work. Section III presents the proposed V2X
federated learning solution. Section IV describes simulation
setup, performance results, and comparison with a baseline
work. Finally, the conclusions are drawn in Section V.



TABLE I: Heterogeneous Communication Scenarios in the proposed V2X Federated Learning Architecture: V2V and V2N

Scenario No. Vehicle A Vehicle B (Own
vehicle)

Vehicle C V2X Comm. flow from B =⇒ A V2X Comm. flow from C =⇒ A

1 Cellular Cellular Cellular B → BS → Relay Server
→ BS → A

C → BS → Relay Server
→ BS → A

2 802.11 802.11 802.11 B → A C → A
3 802.11 Both 802.11 and

Cellular
Cellular B → A C → BS → Relay Server

→ BS → B → A
4 Both 802.11 and

Cellular
Both 802.11 and
Cellular

Both 802.11 and
Cellular

B → A or B → BS →
Relay Server → BS → A
or B → C → BS → Relay
Server → BS → A

C → A or C → BS →
Relay Server → BS → A
or C → B → BS → Relay
Server → BS → A

II. RELATED WORK

The authors in [3] present an online federated RL trans-
fer process for real-time knowledge extraction where all
the participant agents make corresponding actions with the
knowledge learned by others, even when they are acting
in very different environments. To validate the effectiveness
of the proposed approach, they constructed a real-life colli-
sion avoidance system with Microsoft Airsim simulator and
NVIDIA JetsonTX2 car agents, which cooperatively learn
from scratch to avoid collisions in indoor environment with
obstacle objects. The authors in [4] introduces the back-
ground and fundamentals of Federated Learning (FL). Then
the paper highlights the aforementioned challenges of FL
implementation and review existing solutions. Furthermore,
they present the applications of FL for mobile edge network
optimization. Finally, they discuss the important challenges
and future research directions in FL.

One of the most important tasks for transfer reinforcement
learning is to generalize the already-learned knowledge to
new tasks [5], [6], [7]. [8] proposed a decentralized end-to-
end sensor-level collision avoidance policy for multi-robot
systems, with the pre-trained process conducted on stage
mobile robot simulator. [9] studied the problem of reduc-
ing the computationally prohibitive process of anticipating
interaction with neighboring agents in a decentralized multi-
agent collision avoidance scenario. The pre-trained model of
the RL model used is based on the trained data generated by
the simulator.

The authors in [10] provides a comprehensive analysis of
the usage of FL over ML in vehicular network applications
to develop intelligent transportation systems. Based on the
real image and lidar data collected from the vehicles, the
paper illustrates the superior performance of FL over ML in
terms of data transmission complexity for vehicular object
detection application. In this overview paper [11], data-driven
learning model-based cooperative localization and location
data processing are considered, in line with the emerging
machine learning and big data methods. Paper demonstrates
various practical use cases that are summarized from a mix-
ture of standard, newly published, and unpublished works,
which cover a broad range of location services, including
collaborative static localization/fingerprinting, indoor target
tracking, outdoor navigation using low-sampling GPS, and
spatio-temporal wireless traffic data modeling and prediction.
Work in [12] proposes to integrate the Deep Reinforcement

Fig. 1: Distributed V2X architecture for safe navigation

Learning techniques and Federated Learning framework with
mobile edge systems, for optimizing mobile edge computing,
caching and communication. And thus, they design the “In-
Edge AI” framework in order to intelligently utilize the
collaboration among devices and edge nodes to exchange
the learning parameters for a better training and inference
of the models, and thus to carry out dynamic system-
level optimization and application-level enhancement while
reducing the unnecessary system communication load.

Many ITS solutions using single radio for inter-vehicle
communication have been proposed in the literature. In [13],
4G LTE is used for the communication between vehicles and
pedestrians and V2V communication is still in its infancy,
particularly when considering smartphones [14]. In [15],
a system model for geographically separated edge clouds
is developed by considering Chicago city and co-locating
edge computing clusters with known Wi-Fi AP locations.
The authors have proposed to deploy edge servers at base
stations that allows vehicles to connect with a set of base
stations alongside roads, so as to provide flexible vehicle-
related services. Many studies talk about efficient offloading
of the tasks to a nearby edge server in order to reduce the
computational load on vehicles or benefit from collaborative
communication and computation among vehicles [16].

III. PROPOSED WORK

Fig. 1 shows the proposed V2X federated learning archi-
tecture for collision avoidance which consists of three layers:



vehicles, base stations, and an edge relay server. We can run
RL in vehicles or at edge server. In this paper, we consider
the first approach where the proposed collision avoidance
application runs in each vehicle in a distributed fashion by
opportunistically using 4G cellular and 802.11 based radios
present in vehicles for realizing V2V and V2N modes of
communication. In this architecture, various heterogeneous
scenarios are possible for inter-vehicle communication as
shown in Table I. In this table, V ehicle A is assumed as
the own vehicle of interest and V ehicle B and V ehicle C
are its nearby vehicles which are in close vicinity of each
other on the road. Fifth and sixth columns in the table show
how V ehicle A receives parameters learned by V ehicle B
and V ehilce C using V2V or V2N modes of communication.

In Scenario 1, since all three vehicles are having on-
board units (OBUs) fitted with cellular radios (4G or 5G),
they make use of V2N mode of communication. The commu-
nication flow from V ehicles B to V ehicle A is as follows:
V ehicle B sends its awareness message (timestamp, reward,
learning rate, discount factor, velocity, location, acceleration,
etc.) to cellular base station (BS), then the BS forwards
it to the edge server acting as the relay for exchange of
awareness messages among the vehicles. Then the awareness
message of V ehicle B is pulled by V ehicle A from the relay
server via BS. V ehicle C’s awareness message reaches to
V ehicle A in the similar manner.

In the Scenario 3, V ehicle A is 802.11 enabled,
V ehicle B is both cellular and 802.11p enabled, whereas
V ehicle C is cellular enabled. Here V ehicle B talks directly
with V ehicle A over 802.11p in V2V mode. But, V ehicle C
cannot be able to communicate with V ehicle A, as both have
different radios. If a vehicle with both cellular and 802.11
radios is in the vicinity of V ehicle C and V ehicle A, such
as V ehicle B in this case, then communication flow from
V ehicles C to V ehicle A is as follows: V ehicle C sends
its awareness message to BS which in turn forwards it to
the edge relay server. V ehicle B then pulls V ehicle C’s
message from the relay server via BS and piggybacks it in
its own awareness message sent over 802.11 link, so that it
could be received by V ehicle A.

Further we explain basic reinforcement learning block
diagram, collision avoidance application and finally federated
averaging process.

A. Reinforcement learning

Fig. 4 shows basic RL block diagram. In our work en-
vironment is complete simulation setup, agents are vehicles
and actions are path on which vehicle moves by deciding
whether to accelerate or decelerate. Vehicles take action on
environment and reward is returned according to state of
environment.

B. Collision Avoidance

Algorithm 1 is the collision avoidance algorithm running
in 0 − th vehicle. Every autonomous vehicle runs rein-
forcement learning locally. To avoid collisions we should
maximize the minimum distance between vehicles.

Algorithm 1 Collision avoidance algorithm running in
0-th vehicle
input : Current Vehicle V =

{vel, loc, acc, t headway, timestamp, vehicleid}
output: FMi

while not terminated do
Get current time t1
if t1 − t0 > tu then

t0 = t1
reward0, learning rate0, discount factor0 =
getTrainedModel(0)

s← getCurrentState()
if t headways ≤ 2 then

reward0 = 0
else

reward0 = max((t headway − t min)/t min, 1)
end if
if type= 1 then

BroadcastMessage (vel0,loc0,acc0,
t headways,timestamp0,vehicleid0,reward0,
learning rate0,discount factor0)

reward1,2,3....,N1
, learning rate1,2,3....,N1

,
discount factor1,2,3....,N1

=
GetWifiVehicle()

end
if type= 2 then

PushMessageToCloud(vel0,loc0,acc0,
t headways,timestamp0,vehicleid0,reward0,
learning rate0,discount factor0)

reward1,2,3....,N2
, learning rate1,2,3....,N2

,
discount factor1,2,3....,N2

=
PullCellularVehicle()

end
if type= 3 then

BroadcastMessage (vel0,loc0,acc0,
t headways,timestamp0,vehicleid0,reward0,
learning rate0,discount factor0)

PushMessageToCloud(vel0,loc0,acc0,
t headways,timestamp0,vehicleid0,reward0,
learning rate0,discount factor0)

reward1,2,3....,N3
, learning rate1,2,3....,N3

,
discount factor1,2,3....,N3 =
PullCellularVehicle()∪
GetWifiVehicle()

end
updateModel()

end

Function updateModel:
get federated model(FM) from Algorithm 2
LM0 = FM

End Function
end



Fig. 2: Flow architecture.

Fig. 3: Simulation map.

Fig. 4: RL block diagram

Algorithm 2 Federated averaging in the 0-th vehicle
input : reward1,2,3...,T , learning rate1,2,3....,T ,

discount factor1,2,3....,T
output: Federated Model FM
rewardtemp = 0
learning ratetemp = 0
discount factortemp = 0
for i← 0 to T do

rewardtemp = rewardi + rewardtemp

learning ratetemp = learning ratei +
learning ratetemp

discount factortemp = discount factori +
discount factortemp

end
rewardFed = rewardtemp/T
learning rateFed = learning ratetemp/T
discount factorFed = discount factortemp/T

Create a federated model FM using
rewardFed, learning rateFedanddiscount factorFed

return FM

This can be achieved by setting reward function as follow:

reward = max((t headway − t min)/t min, 1) (1)

Where, tmin is minimum time headway system should
achieve. Time headway is the distance between vehicles
in a transit system measured in time. We set tmin to 2.
Reward will be positive if theadway will be greater than

2. Reward, learning rate and discount factor in collision
avoidance application is sent instead of complete model,
using Cellular and 802.11p based Radios Opportunistically
as shown in above scenarios. As we are not sending complete
model, due to this overload in the network will be less and
latency of communication will reduce. Further, distributed
architecture helps to communicate between vehicles which
are in close vicinity only through edge relay server. This will
distribute the communication overload between edge relay
servers. As we are considering heterogeneous scenario, we
have to consider three types of vehicles. These types are
based on the radios available in the vehicle. Vehicle of type
1 is having only 802.11 based radios. Vehicle of type 2 is
having only 4G cellular based radios. Vehicle of type 3 is
having both 802.11 and 4G cellular based radios.

When vehicle is of type 1, it will broadcast its velocity,
location, acceleration, time headways, timestamp, reward,
learning rate and discount factor. GetWiFiVehicle will collect
the rewards, learning rate and discount factor of all other N1
vehicles which has 802.11 radio.

When vehicle is of type 2, it will push its velocity,
location, acceleration, time headways, timestamp, reward,
learning rate and discount factor to the edge relay server us-
ing PushMessageToCloud function. PullCellularVehicle will
collect the rewards, learning rate and discount factor of all
other N2 vehicles from edge relay server.

When vehicle is of type 3, it will take help of both the
radios as shown in Algorithm 1.

C. Federated Averaging

Vehicles are acting in various environments so there is a
need of model aggregation before each RL agent takes an
action. Aggregation of all the parameters received is done
at vehicle. This aggregation procedure is called as federated
averaging (FedAvg) procedure. Algorithm 2 is the FedAvg
procedure running in 0 − th vehicle. Reward, learning rate
and discount factor are the parameters which are aggregated
and final federated model FM is used for performing future
actions such as acceleration or deceleration of vehicles.

To summarize, vehicle will be running two procedures:
1) Collision avoidance: Vehicle runs RL locally for

collision avoidance and send the parameters learned over
V2V and V2N opportunistically.



Fig. 5: Number of accidents vs flow rate on the merge lane. Fig. 6: Number of accidents vs departure speed on the merge
lane.

2) FedAvg Processing: Aggregation of all the parameters
received from nearby vehicles is done at the vehicle.

IV. SIMULATION SETUP AND PERFORMANCE RESULTS

A. Simulation Setup

We simulated the proposed architecture using SUMO [17],
Veins [2], and Flow [18]. SUMO is an open-source traffic
simulation software designed to handle large road traffic.
Flow is a computational framework for RL and control
experiments for traffic micro simulation. Flow acts as a
bridge between SUMO and RL library as shown in Fig. 2.
Veins is used for realizing V2V and V2N modes of commu-
nication and it is interfaced with SUMO. Simulation states
are changed using Traci. The vehicles are randomly added in
the map. They may not have the same departure time. Fig. 3
shows map used for simulation. There are two highway roads
and merge lane intersecting at a point. Length of highway
considered for simulation is 700 m where as for merge
lane it is 300 m. Table II shows the simulation parameters
that are considered in simulation. We studied scenario one
and six presented in Table I for conducting the simulation
experiments.

The first metric we considered is cumulative reward,
which is collected for three cases: without federated learning,
V2I federated learning (scenario one in Table I) and V2X
federated learning (scenario six in Table I). Cumulative
reward is the sum of the rewards of all cars present in the
simulation. For this metric, we set vehicle per hour on merge
lane, departure speed on the merge lane and simulation time
as 1400, 7.5, and 5 minutes, respectively. On an average
292 vehicles are present in the simulation for collecting this
metric.

The second metric we measure is the number of accidents,
which is also collected for three cases: without federated
learning, V2I federated learning (scenario one in Table I)
and V2X federated learning (scenario six in Table I). First,
it is measured against flow rate on the merge lane (fm). fm

is varied as 1000, 1200, 1400, 1600, and 1800 vehicles per
hour. For this metric, we set departure speed on merge lane
and simulation time as 7.5 and 5 minutes, respectively.

The number of accidents is also measured against depar-
ture speed of the vehicle on the merge lane (sm). sm is varied
as 7.5, 10, 12.5, 15, 17.5, and 20 m/s. For collecting this,
we set fm and simulation time as 1400 vehicles per hour and
5 minutes, respectively. The number of accidents is also
measured against simulation time. Simulation time is varied
as 5, 10, 15, 20, 25, and 30 minutes. For collecting this,
we set fm and sm as 1400 vehicles per hour and 7.5 m/s,
respectively.

TABLE II: Simulation parameters

Parameter Name Value
Flow rate of the vehicles on Highway (vehicles per hour) 2250
Departure speed of the vehicles on Highway 15 m/s
Max acceleration 1.5 m/s2

Max deceleration 1.5 m/s2
Target velocity 20 m/s
Length of left part of highway 600 m
Length of right part of highway 200 m
Length of merge lane 300 m
Number of seeds 10

B. Performance Results

1) Cumulative reward: Higher the reward better the per-
formance of the system is. When we do not use FL, we get a
cumulative reward of 1360. When we use V2I based FL, we
get a cumulative reward of 2142. When we use V2X based
FL, we get cumulative reward of 2518. This means that the
performance of the FL is more stable in case of V2X based
FL compared to V2I based FL and when we do not use FL.

2) Number of accidents: Following are the results for
number of accidents by varying different parameters:

1. Number of accidents vs Flow rate on the merge lane:
Number of accidents is zero when fm is 1000 vehicles per
hour for all three cases. Number of accidents when fm is 1200



Fig. 7: Number of accidents vs simulation time.

vehicles per hour, is zero for V2X based FL, one for V2I
based FL and one when FL is not used as shown in Fig. 5.
Number of accidents when fm is 1800 vehicles per hour, is
two for V2X based FL, four for V2I based FL and six when
FL is not used. So, we are able to reduce 4 accidents at fm
is 1800 when we use V2X based FL compared to when we
do not use FL.

2. Number of accidents vs departure speed on the merge
lane: Number of accidents when departure speed is 7.5 m/s,
is one for V2X based FL, one for V2I based FL, and four
when FL is not used as shown in Fig. 6. Number of accidents
when departure speed is 20 m/s, is three for V2X based FL,
four for V2I based FL, and eight when FL is not used.

3. Number of accidents vs simulation time: Number of
accidents when we run simulation for five minutes, is one
for V2X based FL, one for V2I based FL and four when FL
is not used as shown in Fig. 7. Number of accidents when
we run simulation for 45 minutes, is three for V2X based
FL, four for V2I based FL, and 17 when FL is not used.

Above results show that when we do not use FL, the
number of accidents increases exponentially. Number of
accidents are nearly same for V2X based and V2I based
FL. But V2X based FL is better compared to V2I based FL.

3) Comparison with a baseline work: In the baseline
paper [3], the authors proposed a V2I based FL, whereas our
approach uses V2X based FL which uses both IEEE 802.11p
and LTE radios opportunistically. The latency of communica-
tion reduces as we use V2V mode of communication which
indirectly reduces number of accidents. The comparison can
be observed from the Figs. 5, 6, 7.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a Cooperative V2X based
FL system using LTE and 802.11p radios for collision
avoidance. The proposed V2X based FL system makes good
use of the radios present in vehicles, thereby performs better
than the system which only used 4G LTE radio for V2X
communication. In future, we will focus on extending the
proposed architecture with V2X mode of communication
with RSUs fitted with C-V2X/802.11p radios.
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